A New Compromise Decision-making Model Based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

B. Vahdani*, M. Salimi a, S. M. Mousavi b

a Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
b Industrial Engineering Department, Faculty of Engineering, Shahed University, Tehran, Iran

PAPER INFO

Paper history:
Received 06 May 2014
Received in revised form 21 June 2014
Accepted 26 June 2014

Keywords:
Multi-objective
Uncertainty
TOPSIS
VIKOR

ABSTRACT

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal alternative is closer to fuzzy positive ideal solution (FPIS) and farther from fuzzy negative ideal solution (FNIS). Second of them is that the proposed method provides a maximum "group utility" for the "majority" and a minimum of an individual regret for the "opponent". In proposed method, the decomposition algorithm is utilized to reduce the large-dimensional objective space. A multi objective identical crisp linear programming is derived from the fuzzy linear model for solving the problem. Then, a compromise solution method is applied to solve each sub problem based on TOPSIS and VIKOR simultaneously. Finally, to illustrate the proposed method, an illustrative example is provided.

1. INTRODUCTION

Decision making can be regarded as the mental processes encountered under various situations where a number of competing alternatives need to be chosen based on a set of criteria. Decision making problems are introduced in many fields such as management and engineering. MCDM is divided into multi-objective decision making (MODM) and multi-attribute decision making (MADM). MADM is applied to find suitable option among several alternatives versus multi-attribute but MODM studies decision problems in which the decision space is continuous. In other words, there are many decision problems with multi objective during decision making so they may conflict with each other [1-3]. The rate complexity is associated with proportional enhancements in number of variables. As the number of variables increases, the complexity of problem increases. In other words, there are various factors in the objective functions and constraints in these problems. Further, in large scale problems, there is so great scope to solve them by usual methods in a less time. Because optimization of large scale problems takes a long time, the original programming problems are decomposed into several smaller sub problems. Moreover, the complexity of optimization method is reduced. Furthermore, the decomposition methods are so great scope to solve the large scale problems by usual methods in a less time. Block angular structure problems are one of the most common large scale programming problems. Fortunately, these problems have special structures that can be decomposed easily [1, 4-6]. A suitable approach for treating large-scale problems is to reduce the size of the problem using model-reduction techniques. The block angular structure problems can be solved by a decomposition method. Dantzig-wolf and Benderz are two types of
decomposition methods [4]. A Dantzig-wolf decomposing algorithm is introduced for parametric space in large scale linear optimization problems with fuzzy parameter [4, 7]. Then this method is applied on large scale linear programming problems with block angular structure [6, 8]. Recently, some compromise multi-criteria decision making (MCDM) methods are extended and applied to find the suitable solution for MOLSNLP problems. TOPSIS method is applied to solve multi-objective dynamics programming problems [9]. TOPSIS is applied for evaluating project risk response in fuzzy environment [10, 11]. An extended TOPSIS method is introduced for solving MODM problems [12]. TOPSIS is extended to solve MOLSNLP problems with block angular structure [1, 13]. VIKOR is another compromise MCDM method that is extended for solving MOLSNLP problems [6, 14]. An integrated VIKOR methodology is proposed for plant location selection [15].

Moreover, much knowledge in the real world is uncertainty rather than crisp [16, 17]. Fuzzy set theory is valuable tool to describe this concept. Fuzzy set theory was proposed as a vagueness concept for decision-making problems with conflict of preferences involved in the selection process [16, 18]. Moreover, the fuzzy set concept and the MCDM method were manipulated to consider the fuzziness in the decision-making parameter and group decision-making process [19, 20]. The VIKOR method is applied for solving MOLSNLP problems where the formulation of objective functions and constraints is introduced with crisp data whereas coefficient of objective function and constraint may not be exact and complete.

This paper presents a model based on a novel compromised solution method to solve the multi-objective large-scale programming problems with block angular structure involving fuzzy coefficients. In this method, an aggregating function that is developed from TOPSIS and VIKOR is proposed based on the particular measure of “closeness” to the “ideal” solution. Because in a real case, the information of decision maker related to coefficient of objective function and constraint may not be exact and complete, we proposed a simple method which is applied to formulate the equivalent crisp model of the fuzzy optimization problem. The decomposition algorithm is utilized to reduce the large-dimensional objective space into a two-dimensional space. Because the feasible space of each sub problem is bigger than feasible space of original problem [1]. Then a multi-objective identical crisp programming problem is derived from each fuzzy linear model. In other words, a model with fuzzy coefficients in objective function will be transferred to crisp model. Then this method is applied for fuzzy constraints. Furthermore, two independent solution methods are proposed to solve convex problems. In the last step of proposed method, single objective programming problem is solved to find the final solution. In this paper, the advantages of TOPSIS and VIKOR are utilized simultaneously. The new proposed method is developed based on the strategy of the majority criteria and the individual regret in order to calculate the distance of alternatives from the ideal solutions. On the other hand, unlike the traditional VIKOR method which did not consider both of relative distance from positive ideal solution (PIS) and negative ideal solution (NIS), this paper considers the distance of alternatives from the PIS and NIS simultaneously. Finally, to justify the proposed method, an illustrative example is provided. Then, the sensitivity analysis is described.

Some large scale problems are very hard to separate. Fortunately, some largescale programming problems contain special structure where the new proposed decomposition method is applied to solve large scale programming problem. Each of the independent sub problems can be treated separately. The problem also can be solved separately. Each of these features suggests problems composed solely of independent subsystems. In fact, the large scale programming problems represent the conditions of big company.

The remaining of this paper is organized as follows. The problem formulation is presented in the next section. In this section, the decomposed problem is introduced and then the parameters and variables are described. In section 3, the VIKOR solution method for fuzzy MOLSLP is introduced. In section 4, an example is proposed to illustrate the process of proposed method step by step. Then, the sensitivity analysis is described for each sub problem. The last section is devoted to conclusion.

2. PROBLEM STATEMENT

Consider the following fuzzy MOLSLP problem with the block angular structure:

\[\begin{align*}
\text{Max} \ (\text{Min}) & \ f_1(x, \beta^1) \\
\text{Max} \ (\text{Min}) & \ f_2(x, \beta^2) \\
& \ldots \\
\text{Max} \ (\text{Min}) & \ f_m(x, \beta^m) \\
\end{align*} \]

s.t. \(\begin{align*}
F_S &= \ \ \ \ g_m(x) \\
\beta^m &= \ \ \ \ \ r^m_i(x) \leq \ r^m_i(x) \\
& \ldots \\
& \ldots \\
\beta^m &= \ \ \ \ \ r^m_i(x) \leq \ r^m_i(x) \\
\end{align*} \]

where \(x \) is the decision vector and \(\beta^m \) is the fuzzy coefficient of objective function and constraint. In this problem, the fuzzy coefficients in objective function and constraint may not be exact and complete.
where \(V_i = \{ v_{m1}, v_{m2}, v_{m3} \} \) and \(O_{ij} = (o_{ij1}, o_{ij2}, o_{ij3}) \) are the crisp coefficient for the \(j \)th variable in \(i \)th objective function and \(B_m = (b_{m1}, b_{m2}, b_{m3}) \) are the coefficients of the right-hand side constraints in problem (3). It is pointed out that all of the coefficients are presented as triangular fuzzy numbers.

3. NEW COMPROMISED SOLUTION METHOD FOR FUZZY MOLSLP

In this section, in the first attempt, the Dantzig-Wolfe decomposition method is successfully applied to decompose the original problem into the \(q \) independent sub-problems. In other words, the \(L \)-dimensional problem space is reduced to a one-dimensional space by applying the Dantzig-Wolfe decomposition algorithm. Applying new compromised method; the objectives of each sub problem are aggregated. To this mean, the individual positive ideal solution (PIS) and negative ideal solution (NIS) are calculated for each objective. Applying PIS and NIS, the bi-objective problems are constructed for \(j \)th sub problem. Finally, the final single objective problem is solved to obtain final optimal solution. The proposed method has the following steps:

Step 1. Applying the Dantzig-wolf decomposition method, decompose the primal problem into \(q \) independent sub-problems for all objective functions and constraints to reduce the dimension of primal problem.

Step 2. Transfer each fuzzy programming problem into three crisp problems according to the following procedure. This method is proposed and extended to defusing some fuzzy problems [21-23]. The coefficients of objective functions and constraints are considered as triangular fuzzy numbers. Therefore, there are three crisp objective functions for each fuzzy objective function. Moreover, each fuzzy constraint can be changed into three crisp constraints. The \(i \)th sub problem is transferred as:

\[
\begin{align*}
&\text{Max}(\text{Min}(f(X, U_{ij}))) = \sum_{k=1}^{n} f_k(X, U_{ij}) = \sum_{k=1}^{n} \alpha_{ij}^k \beta^k C_i X_i, \\
&\text{Max}(\text{Min}(f_j(X, U_{ij}))) = \sum_{k=1}^{n} f_k(X, U_{ij}) = \sum_{k=1}^{n} \alpha_{ij}^k \beta^k C_i X_i, \\
&S_t. \ F_s = \begin{cases} \\
\sum_{i=1}^{n} \alpha_{ij}^k \beta^k C_i X_i \leq \beta^k w, & n = 1, \ldots, s_i, \\
H_i(X) = \sum_{i=1}^{n} \alpha_{ij}^k \beta^k C_i X_i \leq \beta^k t, & i = 1, \ldots, w \end{cases}
\end{align*}
\]
Step 3. Calculate the positive ideal solution (PIS) and the negative ideal solution (NIS) of each objective function with fuzzy coefficient under the given constraints. Note that the values of PIS and NIS are calculated through solving the multi-objective problem as a single objective using, each time, only one objective.

\[
PIS: f_{b_j} = \{ \text{Min } \{ f_b(X_i) \mid f_{b_j}(X_j), \forall b \in \mathbb{B} \} \} \quad (8)
\]

\[
NIS: f_{b_j}^- = \{ \text{Max } \{ f_b(X_i) \mid f_{b_j}(X_j), \forall b \in \mathbb{B} \} \} \quad (9)
\]

Step 4. Applying PIS and NIS from the results of step 3, construct the functions of PIS_b, R^{PIS} as a maximum “group utility” for the “majority” and a minimum of an individual regret for the “opponent”. Furthermore, construct the values S_{NIS}^* and R_{NIS} to obtain a compromise solution, as shown follow:

\[
S_{NIS}^* = \sum_{i=1}^{m} \alpha_i \gamma \left(\frac{x_i^0 - f_{b_j}(X_i)}{\gamma} \right) + \sum_{i=1}^{m} \alpha_i \nu \left(\frac{\gamma - f_{b_j}(X_i)}{\gamma - x_i^0} \right) \quad (10)
\]

\[
R_{NIS}^* = \max_i \left(\frac{x_i^0 - f_{b_j}(X_i)}{\gamma} \right) \quad (11)
\]

\[
S_{NIS} = \sum_{i=1}^{m} \alpha_i \gamma \left(\frac{\gamma - f_{b_j}(X_i)}{\gamma} \right) \quad (12)
\]

\[
R_{NIS} = \min_i \left(\frac{\gamma - f_{b_j}(X_i)}{\gamma} \right) \quad (13)
\]

In order to obtain a compromise solution, the following bi-objective problem is introduced:

We can utilize a single objective instead of problem (13) based on a max-min decision making model. This method is proposed by Bellman and Zadeh [19, 23]. The steps of this model are shown in the following steps:

Step 5. Applying TOPSIS method, calculate the PIS and NIS of PIS_b and R_{NIS}^*. Furthermore, calculate the PIS and NIS of S_{NIS} and R_{NIS} among all objective functions.

Step 6. Applying VIKOR method, construct the two objective function problems, relative closeness to the PIS and separation from NIS is as follow:

Min Q_{PIS}^*

Max $Q_{NIS}^*(14)$ $X \in F_{S_l}$

where

\[
Q_{PIS}^* = v \left(\sum_{i=1}^{m} \alpha_i \gamma \left(\frac{x_i^PIS - f_{b_j}(X_i)}{x_i^PIS - f_{b_j}(X_i)} \right) \right) + (1 - v) \left(\frac{R_{PIS} - x_i^PIS}{x_i^PIS - f_{b_j}(X_i)} \right) \quad (16)
\]

Step 7. Construct the two membership functions for Q_{PIS}^* and Q_{NIS}^*, respectively.

The linear membership function for the negative (or Q_{PIS}^*) objective can be defined as:

\[
\mu_{Q_{PIS}}(x) = \left(\frac{Q_{PIS}^* - Q_{PIS}^-}{Q_{PIS}^* - Q_{PIS}^-} \right) \quad (17)
\]

The linear membership function for the positive (or Q_{NIS}^*) objective can be defined as:

\[
\mu_{Q_{NIS}}(x) = \left(\frac{Q_{NIS}^- - x_i^PIS}{Q_{NIS}^- - Q_{NIS}^*} \right) \quad (18)
\]

Step 8. Construct the final single objective problem for each sub problem based on the membership functions. Then solve it to obtain the final optimal solution. Problem (14) is equivalent to the form of following problem as:

\[
\max \lambda
\]

\[
\text{s.t.} \quad \left(\frac{\left(x_i - Q_{PIS}^- \right) \left(x_i - Q_{NIS}^* \right)}{\left(Q_{PIS}^* - Q_{PIS}^- \right) \left(Q_{NIS}^- - Q_{NIS}^* \right)} \right) \geq \lambda
\]

\[0 \leq \lambda \leq 1, \quad X \in F_{S_l}\]

The final compromised solution and satisfactory level are obtained by solving problem (19).

4. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we work out a numerical example to illustrate the new proposed method. This example has three objective functions. The objective functions and constraints are proposed as linear on R^3 where the coefficient of the objective functions and constraints are assumed as triangular fuzzy numbers. Moreover, the weights of objective functions are same for all sub problems. The linear programming example is proposed as:

\[
P:\]

\[
\max f_1(x) = (1, 2, 3) x_1 + (2, 4, 6) x_2 + (1, 3, 5) x_3
\]

\[
\max f_2(x) = (1, 3, 5) x_1 - (2, 5, 7) x_2 - (1, 2, 3) x_3
\]

\[
\max f_3(x) = (2, 4, 6) x_1 + (1, 3, 5) x_2 - (3, 6, 9) x_3
\]

Subject to:

\[
F_S = \begin{cases}
(1,3,5) x_1 + (2,4,6) x_2 - (1,2,3) x_3 \leq (4,8,12) \\
(0,0,0) \leq (2,4,6) x_3 \leq (5,10,15) \\
(0,0,0) \leq (1,2,3) x_2 \leq (2,5,8) \\
(0,0,0) \leq (1,3,5) x_1 \leq (1,5,9)
\end{cases}
\]

Then step 8 of the problem are given below.

Step 1. Decompose the original master problem into three sub problems then solve the sub problems.
separately. The decomposed sub problems P_1, P_2 and P_3 are proposed as:

$$P_1:\quad \text{max} \ f_1(x) = (1,2,3)x_1$$
$$\text{max} \ f_2(x) = (1,3,5)x_1$$
$$\text{max} \ f_3(x) = (2,4,6)x_1$$

$$F_{S_1} = \begin{cases}
 x_1 + 2x_2 - 2x_3 \leq 4 \\
 3x_1 + 4x_2 - 2x_3 \leq 8 \\
 5x_1 + 6x_2 - 3x_3 \leq 12 \\
 0 \leq x_1 \leq 2.5
\end{cases}$$

$$P_2:\quad \text{max} \ f_1(x) = (2,4,6)x_2$$
$$\text{max} \ f_2(x) = (1,3,5)x_2$$

$$F_{S_2} = \begin{cases}
 x_1 + 2x_2 - 2x_3 \leq 4 \\
 3x_1 + 4x_2 - 2x_3 \leq 8 \\
 5x_1 + 6x_2 - 3x_3 \leq 14 \\
 0 \leq x_2 \leq 1
\end{cases}$$

$$P_3:\quad \text{max} \ f_1(x) = (1,3,5)x_3$$
$$\text{max} \ f_2(x) = -(2,5,7)x_3$$

$$F_{S_3} = \begin{cases}
 x_1 + 2x_2 - 2x_3 \leq 4 \\
 3x_1 + 4x_2 - 2x_3 \leq 8 \\
 5x_1 + 6x_2 - 3x_3 \leq 14 \\
 0 \leq x_3 \leq 1
\end{cases}$$

Step 2. Using Equations (5)–(8), transfer each fuzzy programming problem P into three crisp sub problems P_1, P_2, and P_3 and are converted into three crisp objective functions programming problems. The sub problem P_1 can be transfer as follow:

$$P_{11}:\quad \text{min} \ f_1(x) = x_1$$
$$\text{min} \ f_2(x) = 2x_1$$
$$\text{min} \ f_3(x) = 2x_1$$

Subject to: $x \in F_{S_1}$

$$P_{12}:\quad \text{max} \ f_1(x) = 2x_1$$
$$\text{max} \ f_2(x) = 3x_1$$
$$\text{max} \ f_3(x) = 2x_1$$

Subject to: $x \in F_{S_2}$

$$P_{13}:\quad \text{max} \ f_1(x) = 2x_1$$
$$\text{max} \ f_2(x) = 4x_1$$
$$\text{max} \ f_3(x) = 2x_1$$

Subject to: $x \in F_{S_3}$

The third problem is similar to the other two problems as:

$$P_{31}:\quad \text{min} \ f_1(x) = 2x_3$$
$$\text{min} \ f_2(x) = -x_3$$
$$\text{min} \ f_3(x) = -3x_3$$

Subject to: $x \in F_{S_3}$

$$P_{32}:\quad \text{max} \ f_1(x) = 3x_3$$
$$\text{max} \ f_2(x) = -2x_3$$
$$\text{max} \ f_3(x) = -6x_3$$

Subject to: $x \in F_{S_3}$

$$P_{33}:\quad \text{max} \ f_1(x) = 5x_3$$
$$\text{max} \ f_2(x) = -3x_3$$
$$\text{max} \ f_3(x) = -9x_3$$

Subject to: $x \in F_{S_3}$

Step 3. Calculate the individual PIS and NIS of each objective function for sub problems P_1, P_2, and P_3. The obtained PIS and NIS of sub problem P_1 are shown in Tables 1 and 2.

Table 1. PIS payoff table of (P_1)

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0000</td>
<td>2.5000</td>
<td>5.0000</td>
<td>2.5000</td>
</tr>
<tr>
<td>0.0000</td>
<td>2.5000</td>
<td>5.0000</td>
<td>2.5000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table 2. NIS payoff table of (P_1)

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0000</td>
<td>7.5000</td>
<td>5.0000</td>
<td>2.5000</td>
</tr>
<tr>
<td>0.0000</td>
<td>5.0000</td>
<td>7.5000</td>
<td>5.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>10.0000</td>
<td>5.0000</td>
<td>2.5000</td>
</tr>
<tr>
<td>5.0000</td>
<td>10.0000</td>
<td>5.0000</td>
<td>2.5000</td>
</tr>
<tr>
<td>0.0000</td>
<td>10.0000</td>
<td>5.0000</td>
<td>2.5000</td>
</tr>
</tbody>
</table>

Like the first problem, the second problem P_2 can be transferred into three crisp sub problems as:

$$P_{21}:\quad \text{min} \ f_1(x) = 2x_2$$
$$\text{min} \ f_2(x) = 3x_2$$
$$\text{min} \ f_3(x) = 2x_2$$

Subject to: $x \in F_{S_2}$

$$P_{22}:\quad \text{max} \ f_1(x) = 4x_2$$
$$\text{max} \ f_2(x) = 5x_2$$
$$\text{max} \ f_3(x) = 5x_2$$

Subject to: $x \in F_{S_2}$

$$P_{23}:\quad \text{max} \ f_1(x) = 2x_2$$
$$\text{max} \ f_2(x) = 2x_2$$
$$\text{max} \ f_3(x) = 2x_2$$

Subject to: $x \in F_{S_2}$

NIS: $f_{11}^{−} = (f_1^{−}, f_2^{−}, f_3^{−}) = (5.0000, 0.0000, 0.0000)$

Steps 4 and 5. Applying PIS and NIS from the results of step 3, construct the functions of S^{PIS} and R^{PIS} as shorter distance from the PIS and S^{NIS}, R^{NIS} as farther distance from NIS for each sub problem. Then calculate
the PIS and NIS of S_{PIS}^*, R_{PIS}^*, S_{NIS}^* and R_{NIS}^* as shown below:

$S_{PIS}^* = 0.4444$ $R_{PIS}^* = 0.0000$

$S_{NIS}^* = 1.4444$ $R_{NIS}^* = 0.3200$

$S_{NIS}^* = 1.8333$ $R_{NIS}^* = 0.3333$

$S_{NIS}^* = 0.8333$ $R_{NIS}^* = 0.0133$

Step 6. Applying PIS and NIS from the results of step 5, construct the two objective functions (Q_{PIS}, Q_{NIS}) problem as follow:

$Q_{PIS} = 0.0749x_1 + 0.3334$ \hspace{1cm} (33)

$Q_{NIS} = -0.2750x_1 + 0.2$ \hspace{1cm} (34)

$Q_{PIS}^* = 0.3334$

$Q_{NIS}^* = 0.5132$

$Q_{NIS}^* = 0.2$

Step 7. Construct the two membership functions for Q_{PIS} and Q_{NIS}, respectively.

$\mu_1(x) = 1 - 0.4166x_1$ \hspace{1cm} (35)

$\mu_2(x) = -0.4166x_1 + 1$ \hspace{1cm} (36)

Step 8. Final solution is obtained by solving the single problem (37) as:

$$\max_{\lambda} \lambda$$

$$1 - 0.4166x_1 \geq \lambda$$

$$0 \leq \lambda \leq 1, \ X \in FS_t$$

$$\lambda^* = 1.0000x_1^* = 0.0000$$

λ^* is the maximum satisfactory level and x_1^* is the final compromised solution for first sub problem. We want to obtain the ideal compromised solution. In other words, the objective function Q_{PIS} should be minimized whereas the function Q_{NIS} should be maximized. As shown in Figure 1, point $x_1^* = 0$ is optimum compromised solution. Moreover, the maximum level of λ is $\lambda^* = 1.0000$

Now, we solve the second sub problem similar to first sub problem. In this sub problem, Q_{PIS} and Q_{NIS} are optimized as shown in Figure 2. The maximum level of λ occurs at $\lambda^* = 0.5$. In other words, the more value of x_2 in this problem is better. But considering the constraint, the optimum compromised solution is $x_2^* = 1.000$.

Similar to sub problems P_1 and P_2, the problem P_3 is solved. The maximum satisfactory level ($\lambda^* = 0.5000$) is achieved for the compromised solution $x_3^* = 0.5000$.

As shown in Figure 3, the best final solution of third sub problem is $x_3^* = 0.5000$. Moreover, the maximum satisfactory level is $\lambda^* = 0.5000$. In addition, the proposed method is applied for each sub problem independently. Therefore, this method allows utilizing the TOPSIS and VIKOR to obtain a compromise solution for each sub problems.
Moreover, the satisfactory level of each objective is determined. Applying VIKOR method, the result of sub problem 1 is solved and the optimum value of \(x_1^* = 0.5000 \) and final solution of \(x_1^* \) in the proposed method is 0.5000. Moreover, the values of \(x_2^*, x_3^* \) are 1.0000, 0.5000 respectively, whereas the final solution of \(x_2^*, x_3^* \) are 4.0000, 1.0000 applying new proposed method.

5. CONCLUSION

In this paper, we focused on applying a new compromised approach to deal with MOLSLP problems with block angular structure. Our new method combines concepts from the TOPSIS and VIKOR methods. In other words, the proposed method applies the advantages of TOPSIS and VIKOR methods simultaneously. Unlike the traditional VIKOR method which did not consider both relative distance from positive ideal solution (PIS) and negative ideal solution (NIS), this paper considered the distance of alternatives from the PIS and NIS simultaneously. Finally, to justify the proposed method, an illustrative example was provided. Then, the sensitivity analysis was described. Using TOPSIS and VIKOR, the new proposed method aggregated the fuzzy multi-objective into single objective based on new compromised logic. Because the uncertainty is the feature of real word decision making problems, the values of decision matrix can be presented with uncertainty. The proposed method assists experts to take data in the forms of linguistic terms in a programming problem. This leads to more realistic decision-making process in real situations. The Dantzig-Wolf decomposition method is utilized to reduce an N-dimension problem into some q space sub problems. Therefore, the complexity of decision making problem is reduced. Then a useful method was applied to transfer each fuzzy sub problem to three crisp sub problems. Moreover, the fuzzy constraints were transferred into crisp constraints. Then, the proposed new compromised method was applied to obtain a suitable compromise solution. To obtain compromise solution of original problem, the individual positive ideal solution (PIS) and negative ideal solution (NIS) were calculated for each objective. Moreover, the VIKOR method is applied to calculate the amounts of “group utility” for the “majority” and the individual regret for the “opponent”. The concept of membership function is introduced and applied to aggregate the objective functions in each sub problem. Therefore, this method can help the decision makers when the coefficient of objective functions and constraint is not crisp and the problem is large scale. Therefore, this method is applied in greater number of issues to deal with the real world problems. Finally, to justify the proposed method, an illustrative example was provided.

The objective functions and constraints may be proposed as a fuzzy linear programming problem. Moreover, the programming problem can be proposed gray data. These subjects give a new opportunity for further research.

6. ACKNOWLEDGMENT

The authors would like to acknowledge the partially financial support of Islamic Azad University, Qazvin Branch, Qazvin, Iran for this research.

7. REFERENCE

A New Compromise Decision-making Model Based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

B. Vahdani, S. Mousavi, M. Salimi

Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Industrial Engineering Department, Faculty of Engineering, Shahed University, Tehran, Iran

PAPER INFO

Paper history:
Received 06 May 2014
Received in revised form 21 June 2014
Accepted 26 June 2014

Keywords: Multi-objective Uncertainty TOPSIS VIKOR

چکیده
در این مقاله یک دستگاه سازمانی بر اساس یک روش جدید به معنی حل حالت مساله برنامه‌ریزی جهت هدف‌های فلسفی و جهت‌های متعدد بلوند رویه‌های از شامل پارامترهای فازی ارائه می‌شود. مسئله مورد بررسی شامل پارامترهای فازی در توالی هدف و متغیرین ها می‌باشد. در روش های برنامه‌ریزی سازمانی و هدف‌ها به طور هم‌زمان در نظر گرفته می‌شود. اولین مفهوم ترتیبی اثربخشی یا به جای آن به ترتیب مثبت و منفی می‌باشد. هدف‌ها به طور هم‌زمان در نظر گرفته شده و بنیت می‌شود. گزاره برای حداکثر و حداقل پیش‌بینی از نظرات میانه‌ی دو شده در روش ارائه شده یک آگاهی نیاز به ضرورت کاهش عاده‌ای بزرگ خاصی است. هدف مورد استفاده قرار می‌گیرد به علاوه یک روش برنامه‌ریزی قطعی جهت هدف‌ها به کرایه‌های مدل TOPSIS و VIKOR به صورت همزمان برای حل هر یک مسئله بکار گرفته شده است. سراجریم به منظور تشریح مدل ارائه شده یک مثال توضیح داده شده است.

doi: 10.5829/idosi.ije.2014.27.11.04